Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation
نویسندگان
چکیده
The standard approach to the solution of the radial basis function interpolation problem has been recognized as an ill-conditioned problem for many years. This is especially true when infinitely smooth basic functions such as multiquadrics or Gaussians are used with extreme values of their associated shape parameters. Various approaches have been described to deal with this phenomenon. These techniques include applying specialized preconditioners to the system matrix, changing the basis of the approximation space or using techniques from complex analysis. In this paper we present a preconditioning technique based on residual iteration of an approximate moving least squares quasi-interpolant that can be interpreted as a change of basis. In the limit our algorithm will produce the perfectly conditioned cardinal basis of the underlying radial basis function approximation space. Although our method is motivated by radial basis function interpolation problems, it can also be adapted for similar problems when the solution of a linear system is involved such as collocation methods for solving differential equations.
منابع مشابه
Iterated Approximate Moving Least Squares Approximation
The radial basis function interpolant is known to be the best approximation to a set of scattered data when the error is measured in the native space norm. The approximate moving least squares method, on the other hand, was recently proposed as an efficient approximation method that avoids the solution of the system of linear equations associated with the radial basis function interpolant. In t...
متن کاملApproximate Moving Least-Squares Approximation: A Fast and Accurate Multivariate Approximation Method
We propose a fast and accurate approximation method for large sets of multivariate data using radial functions. In the traditional radial basis function approach this task is usually accomplished by solving a large system of linear equations stemming from an interpolation formulation. In the traditional moving least-squares method one needs to solve a small linear system for each evaluation of ...
متن کاملScattered Data Approximation of Noisy Data via Iterated Moving Least Squares
In this paper we focus on two methods for multivariate approximation problems with non-uniformly distributed noisy data. The new approach proposed here is an iterated approximate moving least-squares method. We compare our method to ridge regression which filters out noise by using a smoothing parameter. Our goal is to find an optimal number of iterations for the iterative method and an optimal...
متن کاملMoving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008